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Abstract
Based on Kubo’s linear response theory, we discuss the anomalous Hall effect (AHE) in a
two-dimensional electron gas (2DEG) with Rashba spin–orbit coupling (SOC) subjected to a
homogeneous out-of-plane magnetization, by taking into account the coupling between the
anisotropic magnetic impurities and itinerant electrons. For a weak, short-ranged impurity
potential, in the limit of εf � h̄/τ,�, the self-energy is calculated in the Born approximation,
and the vertex correction to the Hall conductivity is taken into account by the ladder
approximation. Then the anomalous Hall conductivity in the steady state (ω = 0) is
nonvanishing at zero temperature in the presence of the magnetic impurities, which is different
from the nonmagnetic impurities condition.

1. Introduction

Spintronics has become a fast developing area using the
electron spin degrees of freedom, rather than the conventional
electron charge in electronic devices, and has attracted the
attention of many scientists in the last several years [1–4].
The spin–orbit coupling (SOC), which couples the electron
momentum and spin, can serve as a spin-charge mediator.
Also, the study of SOC in mesoscopic systems has been the
subject of extensive research in recent years, for instance
the spin Hall effect (SHE) in normal semiconductors and the
anomalous Hall effect (AHE) in ferromagnets.

The theoretical discussion of the AHE has a long,
controversial history. As early as in the 1950s, in the
pioneering work by Karplus and Luttinger [5], it was first
pointed out that the AHE in ferromagnets results from the
interplay of the exchange field and spin–orbit coupling. Also,
soon after, as was developed by Smit [6] and Berger et al [7],
the so-called extrinsic Hall contribution was attributed to the
skew and side-jump scattering at impurities. On the other hand,
the so-called intrinsic Hall contribution was attributed to the
Berry phase in the absence or presence of impurities [8, 10]
and, in recent years, it has been developed on the basis of
the Kubo–Streda linear response formalism or semiclassical
Boltzmann transport theory [9, 11, 12].

Another interesting phenomenon arising from the SOC
is the SHE, which describes the way that, in a normal
semiconductor, when an external electric field is applied in
the plane, a persistent spin current appears in the transverse
direction without any net charge current in this direction. Also,
this has developed rapidly due to its potential applications in
the last several years, including theoretical discussions and
experimental observations. Analogously to the AHE, two
different mechanisms of SHE are proposed: the extrinsic
SHE [13–16], which is associated with impurity scattering,
such as skew scattering and the side-jump process. On the
other hand, intrinsic SHE was proposed by Murakami et al [19]
in a p-type semiconductor for a Luttinger [17] Hamiltonian
and by Sinova et al [20] in a two-dimensional electron gas
(2DEG) with Rashba [18] SOC in the clean limit. In addition
to the theoretical development, on the experimental side, two
typical experiments have been reported by Kato [21] and
Wunderlich [22], explained as the extrinsic and intrinsic SHE,
respectively.

But unfortunately, in the presence of impurities, when
vertex correction is taken into account, the spin Hall
conductivity is vanishing for the 2DEG with Rashba SOC in
the dc condition [23]. Similarly to the conclusion obtained by
Smit [6] for the anomalous Hall conductivity in ferromagnets,
and from then on, the effect of impurities has been investigated
extensively, including isotropic [24] and anisotropic magnetic
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impurities [25]. They found that, for both kinds of magnetic
impurities, the spin Hall conductivity is nonzero for the Rashba
SOC system. In addition, in Inoue et al’s work [24], the
anomalous Hall conductivity has also been discussed in the
presence of isotropic but spin-dependent impurities, and it was
reported that, only when the self-energy is spin-dependent, the
anomalous Hall conductivity is nonzero, otherwise the Hall
conductivity is vanishing. Due to the resemblance between
the AHE and SHE, one may view the SHE as the zero
magnetization limit of the AHE [24], and now, with the SHE
surviving in anisotropic magnetic impurities, can the AHE
exist likewise? This leaves an opportunity for nonvanishing
anomalous Hall conductivity and motivates us to have a further
discussion about the AHE in the present paper.

In this paper, we calculate the anomalous Hall conduc-
tivity for a two-dimensional magnetically disordered Rashba-
electron gas, subjected to a uniform magnetization perpendic-
ular to the plane. Also, the so-called X X Z -type anisotropic
interaction between the magnetic impurities and the electron
is applied. In the limit of large Fermi energy (εf � h̄/τ , �),
based on Kubo’s linear response theory, the anomalous Hall
conductivity is nonvanishing even when the vertex correction
is taken into account, which is obtained within the Born ap-
proximation by a ladder diagram, which is different from the
conditions of nonmagnetic and isotropic spin-dependent impu-
rities [24]. In addition, for the case that we discuss here, the
anomalous Hall conductivity is anisotropy dependent.

2. The model with magnetic impurities

Let us consider a two-dimensional electron gas with Rashba
spin–orbit coupling in the presence of impurities, and the
Hamiltonian can be written as:

H = H0 + Vm (1)

where H0 is the unperturbed Hamiltonian for the Rashba
2DEG, subjected to a uniform magnetization perpendicular to
the plane, consisting of noninteracting electrons of mass m:

H0 = h̄2k2

2m
+ α(kyσx − kxσy)+ Mσz . (2)

Here k is the wavevector, confined in the xy-plane with k =
(kx, ky) = k(cos ϕ, sinϕ). σ̂i (i = x, y, z) are the usual
Pauli matrices, α is the spin–orbit coupling constant, which is
tunable by an external electric gate, and M is the strength of the
out-of-plane magnetization, which is assumed to have energy
units for simplification. For a given k, the eigenfunctions of
the Hamiltonian H0 can be expressed as

|k, λ〉 =

⎛

⎜

⎜

⎜

⎜

⎝

iλαke−iϕ

√

(
√

M2 + α2k2 − λM)2 + α2k2
√

M2 + α2k2 − λM
√

(
√

M2 + α2k2 − λM)2 + α2k2

⎞

⎟

⎟

⎟

⎟

⎠

(3)

where λ = ±1, and the corresponding eigenvalues of H0 are

ελ = h̄2k2

2m
+ λ

√

M2 + α2k2. (4)

Also, the carrier’s velocity operator reads v = i[H0, r]/h̄, with
r being the position operator, or they can be described in terms
of components,

vx = h̄kx

m
− α

h̄
σy; (5)

vy = h̄ky

m
+ α

h̄
σx . (6)

Vm is the random potential caused by impurities. Here
the random potential that we considered is supposed to be
weak and short-ranged, but anisotropic and spin-dependent,
described as the X X Z -type interaction between the magnetic
impurities and the electron spin:

Vm =
N
∑

i=1

∫

dr2uδ(r − Ri )̂ψ
+(r)

×
(

γ cos θi sin θi e−iφi

sin θi eiφi −γ cos θi

)

̂ψ(r) (7)

where Ri is the position of the impurity, and (θi , φi ) denotes
the orientation of the impurity. N is the number of impurities,
and u and γ describe the strength and the anisotropy of the
coupling between the itinerant electrons and the magnetic
impurities, respectively. When γ = 1, it represents the
isotropic magnetic impurity, and has been discussed in the
previous literature of [24] for the spin Hall conductivity in
the absence of magnetization. For simplicity, in this work
we assume that the distribution of impurities is homogeneous
and that the magnetic orientations of the impurities induced by
their surrounding local spherical symmetry being broken could
still be considered random when the magnetization M is no
stronger than each coercive field of local magnetic impurity.

3. Anomalous Hall conductivity

3.1. Self-energy and averaged Green’s functions

Before the calculation of the anomalous Hall conductivity,
we should work out the self-energy of the whole unperturbed
system first. In the absence of impurity scattering, the Green’s
function is described by the Hamiltonian H0 in equation (2):
G0 = (ε − H0)

−1, and the retarded and advanced Green’s
functions can be expressed as

Gr/a
0 (ε,k) = 1

2

∑

λ=±1

1

ε − ελ ± iη

×
(

1 + λ
α(kyσx − kxσy)+ Mσz√

M2 + α2k2

)

, (8)

respectively, for η → 0+.
Due to the presence of an impurity potential, the Green’s

functions should be modified. Taking into account the
weak, short-ranged, anisotropic, and homogeneous magnetic
impurities in the Born approximation, the corresponding self-
energy of the electrons for the averaged retarded and advanced
Green’s functions are [26]

�r/a = niu2

V

∑

k

∫

1

4π
dθ dφ sin θ

(

γ cos θ sin θe−iφ

sin θeiφ −γ cos θ

)

× Gr/a
0 (ε,k)

(

γ cos θ sin θe−iφ

sin θeiφ −γ cos θ

)

(9)
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where V is the area of the 2DEG, and ni denotes the
impurity concentration. After some tedious but straightforward
calculation, we can get that the self-energy is diagonal in the
space of momentum k, and is independent of momentum and
spin. The imaginary components of the two Green’s functions
are:

Im�r/a(ε) = ∓ h̄

2τ
(10)

where τ denotes the momentum relaxation time, h̄/τ =
niu22πν(γ 2 + 2)/3, and ν = m/2π h̄2 is the two-
dimensional density of states, which is the same as in the
absence of magnetization [25, 27]. Taking into account the
contribution from the imaginary component of the self-energy,
and neglecting the real part, the two averaged retarded and
advanced Green’s functions are

Gr/a(ε,k) = 1

2

∑

λ=±

1

ε − ελ ± i h̄
2τ

×
(

1 + λ
α(kyσx − kxσy)+ Mσz√

M2 + α2k2

)

. (11)

Then, along the lines of [23, 28], first we calculate the
anomalous Hall conductivity σ 0

xy , which corresponds to the
nonvertex correction at zero temperature and zero frequency,
based on Kubo’s formula

σ 0
xy = e2h̄

2πV

∑

k

Tr [Ga(εf,k)vx Gr (εf,k)vy] (12)

where e is the charge of the electron. εf is the Fermi energy,
and vx and vy have been obtained in equations (5) and (6),
respectively. Applying limV →∞(1/V )

∑

k → ∫

d2k/(2π)2,
the summation in equation (12) can be turned into the
integral. Then we introduce another new dimensionless
integral variable: q = √

α2k2 + M2/εf, and subsequently
we decompose the denominator in equation (12) coming from
the product of the denominator of the retarded and advanced
Green’s functions, (εf − ελ − ih̄/2τ )(εf − ελ′ + ih̄/2τ ), into
the form: (εf/a2)2(q − q1)(q − q2)(q − q3)(q − q4), where qi

(i = 1, 2, 3, 4) represent the poles. We assume that the Fermi
energy is the largest energy scale, i.e. εf � h̄/τ ,�. Within the
accuracy of O(b, r) and in a up to second order, the four poles
can be expressed as:

q1 = −λa2

2
+ b − i

r

4
;

q2 = −λa2

2
− b + i

r

4
;

q3 = −λ′ a2

2
+ b + i

r

4
;

q4 = −λ′ a2

2
− b − i

r

4

(13)

where the dimensionless constants a = αkf/εf, b =
√

α2k2
f + M2/εf, and r = a2h̄/(bεfτ ) are introduced, in the

assumption of the largest Fermi energy scale that a, b, r 	 1.
Now, based on these preparations, we can calculate the Hall

conductivity with the help of residue theorem and obtain the
Hall conductivity without vertex correction:

σ 0
xy = −4e2h̄ν

α2

h̄2
M

τ 2/h̄2

1 + (2�τ/h̄)2
(14)

where 2� = 2
√

M2 + α2k2
f denotes the splitting energy

between the two separated branches in the presence of spin–
orbit interaction and magnetization at the Fermi surface, when
the two branches are both occupied, and kf is the Fermi
wavevector. Clearly, σ 0

xy in equation (14) is the same as
the conclusion derived by Inoue et al [24] for isotropic spin-
dependent impurities in the approximation M � αkf. By
simple calculation, we can also find that the conclusion is the
same as in the nonmagnetic impurities case.

3.2. Vertex correction

Furthermore, we calculate the vertex correction σ L
xy to the

anomalous Hall conductivity, which corresponds to the ladder
diagram, and the sum of ladder diagrams is expressed as

σ L
xy = e2h̄

2πV

∑

k

Tr[Ga(εf,k)̃vx Gr (εf,k)vy] (15)

where ṽx is the vertex correction to the vx . Also, the equation
for the vertex ṽx can be expressed in the following form in the
ladder approximation in the presence of short-ranged magnetic
impurities:

ṽx = niu2

V

∑

k

∫

dθ dφ
1

4π
sin θ

(

γ cos θ sin θe−iφ

sin θeiφ −γ cos θ

)

× Ga(εf,k)[vx + ṽx ]Gr (εf,k)

×
(

γ cos θ sin θe−iφ

sin θeiφ −γ cos θ

)

. (16)

Also, we can find that the vertex ṽx should be independent of
momentum k. Then we look for a solution of equation (16) in
the form

ṽx =
(

(̃vx)↑↑ (̃vx )↑↓
(̃vx)↓↑ (̃vx )↓↓

)

. (17)

Before the calculation of the anisotropy magnetic impurity
case, for comparison we would like to review the nonmagnetic
condition in brief, with a δ-function-shaped (weak, short-
ranged) impurity scattering potential, and the disorder average
〈Vm(r)Vm(r

′
)〉 = niu2δ(r − r

′
), which induces the momentum

relaxation time h̄/τ = niu22πν. Similarly to the magnetic
case, the vertex ṽ 0

x consists of four components: (̃v0
x)↑↑,

(̃v0
x)↑↓, (̃v0

x)↓↑, (̃v0
x)↓↓, respectively. Also, they satisfy the

diagram equation within the impurity ladder approximation:

ṽ0
x = niu

2
∫

d2k

(2π)2
Ga(εf,k)[vx + ṽ0

x ]Gr (εf,k). (18)

After simple calculation, in the limit of a large Fermi energy

3
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level εf � �, h̄/τ , we can obtain:

(̃v0
x)↑↑ = 1

2

(

(̃v0
x)↑↑ + (̃v0

x)↓↓
)+ A0

2
((̃v0

x)↑↑ − (̃v0
x)↓↓);

(̃v0
x)↓↓ = 1

2
((̃v0

x)↑↑ + (̃v0
x)↓↓)− A0

2
((̃v0

x)↑↑ − (̃v0
x)↓↓);

(̃v0
x)↑↓ = B0

2
+ C0

2
(̃v0

x )↑↓;

(̃v0
x)↓↑ = − B0

2
+ C0

2
(̃v0

x)↓↑
(19)

where

A0 = M2

�2
+ 1

1 + (2�τ/h̄)2
− M2

(1 + (2�τ/h̄)2)�2
;

B0 = −i
α

h̄
(1 + M2

�2
)(1 − 1

1 + (2�τ/h̄)2
);

C0 = 1 − M2

�2
+ 1

1 + (2�τ/h̄)2
+ M2

(1 + (2�τ/h̄)2)�2
.

(20)
From the first lines of the above equations (19), we find
(̃v0

x)↑↑ = (̃v0
x)↓↓, which have no contribution to the vertex

correction of the Hall conductivity. From the last two lines,
we can obtain

(̃v0
x)↑↓ = −(̃v0

x)↓↑ = −i
α

h̄
. (21)

Then, with the help of equation (15), we can obtain the results
directly,

σ L0
xy = 4e2h̄ν

α2

h̄2
M

τ 2/h̄2

1 + (2�τ/h̄)2
(22)

and finally, for the nonmagnetic impurities case, the total
anomalous Hall conductivity is

σ n
xy = σ 0

xy + σ L0
xy = 0. (23)

Clearly, because of the presence of vertex correction, the two
contributions to the anomalous Hall conductivity cancel each
other out, and finally the Hall conductivity is vanishing. Just as
Smit [6] pointed out, the intrinsic effect of the applied electric
field is completely canceled out by collision, and there is no
stationary anomalous Hall effect in the disordered sample.

Now, we turn to calculate the vertex in the presence of
magnetic impurities. Using the same method, substituting the
expression (equation (17)) into equation (16) and with the help
of equation (8), we find, in the limit of large Fermi energy level
εf � �, h̄/τ , that

(̃vx)↑↑ = 1

2

(

(̃vx)↑↑ + (̃vx)↓↓
)+ A

2
((̃vx)↑↑ − (̃vx)↓↓);

(̃vx)↓↓ = 1

2
((̃vx)↑↑ + (̃vx )↓↓)− A

2
((̃vx)↑↑ − (̃vx)↓↓);

(̃vx)↑↓ = B

2
+ C

2
(̃vx)↑↓;

(̃vx)↓↑ = − B

2
+ C

2
(̃vx)↓↑

(24)

where

A = γ 2 − 2

γ 2 + 2

(

M2

�2
+ 1

1 + (2�τ/h̄)2

− M2

(1 + (2�τ/h̄)2)�2

)

;

B = iαγ 2/h̄

γ 2 + 2

(

1 + M2

�2

)(

1 − 1

1 + (2�τ/h̄)2

)

;

C = −γ 2

γ 2 + 2

(

1 − M2

�2
+ 1

1 + (2�τ/h̄)2

+ M2

(1 + (2�τ/h̄)2)�2

)

.

(25)

From the first two lines of equations (24) we find (̃vx)↑↑ =
(̃vx)↓↓, similar to the nonmagnetic condition. They have no
contribution to the vertex correction, and we can set them to
zero for simplification. From the last two lines, we can obtain

(̃vx)↑↓ = −(̃vx)↓↑ = B

2 − C
. (26)

Then, substituting the above results into equation (15),
the vertex correction to the anomalous Hall conductivity is
evaluated directly, expressed as

σ L
xy = 4ie2h̄ν

α

h̄
M

τ 2/h̄2

1 + (2�τ/h̄)2
(̃vx)↑↓ (27)

and the total anomalous Hall conductivity is

σxy = σ 0
xy + σ L

xy

=
(

1 + γ 2(1 + M2

�2 )(1 − 1
1+(2�τ/h̄)2 )

γ 2 + 2 + γ 2(�
2−M2

�2 + �2+M2

(1+(2�τ/h̄)2)�2 )

)

σ 0
xy . (28)

4. Discussion and summary

In the limit of εf � h̄/τ,�, the anomalous Hall conductivity
of the above result (equation (28)) can be simplified further by
assuming that M � αkf and �τ/h̄ � 1:

σxy =
(

1 + 2γ 2

γ 2 + 2

)

σ 0
xy . (29)

We can easily see from equation (29) that the expression for
σxy is odd with respect to magnetization M, as expected, and
that σxy = 0 at the limit M = 0. Now, the anomalous
Hall conductivity is no longer zero in the presence of the
magnetization M, even when the vertex correction is taken
into account, which is different from the nonmagnetic and
isotropic spin-dependent impurity condition [24]. This is not
difficult to understand from two aspects. First, it is easy
to find that, in the calculation of the vertex correction, the
B0 and B corresponding to the nonmagnetic and magnetic
impurity conditions, respectively, have opposite sign, which
is due to the matrix elements for the magnetic potential
including the term 〈λ|σz |λ〉, while in the nonmagnetic case
the potential is spin-independent and has the opposite sign.
This is just as explained by Inoue [24] for the nonvanishing

4
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spin Hall conductivity. Second, from the viewpoint of
impurity scattering, when the scattering is spin-dependent, up
and down spin electrons are scattered in opposite directions,
resulting in spin-up and spin-down charge currents along the
direction perpendicular to the external electric field. In normal
semiconductors, the electrons are not spin polarized, so that
an equal number of electrons with up and down spin are
scattered in opposite directions, respectively. Then there will
be no Hall voltage, but spin accumulation exists, which can
be used to explain the nonvanishing spin Hall conductivity
in magnetic impurities [24, 25]. Meanwhile, in ferromagnets
the intrinsic spin imbalance makes the charge in the two
scattering directions different and a Hall voltage proportional
to the magnetization is induced. But, if the scattering is spin-
independent, then there will be no such properties and it is
not surprising that we obtain vanishing anomalous or spin Hall
conductivities.

With the experimental parameters, the order of magnitude
of the anomalous Hall conductivities can be estimated for
different anisotropy γ . We take the electron’s effective mass
as m = 0.05 me, the impurity density as ni = 1.2 ×
1010 cm−2, and the impurity scattering strength as u = 0.2 ×
10−12 meV cm, which ensures that the relaxation time is τ ∼
1 ps. Also, the electron density is taken as n = 1.4×1012 cm−2,
which allows us to estimate the Fermi wavevector kf =√

2πn = 3 × 106 cm−1. In addition, the spin–orbit coupling
coefficient α is varied from 1.0 × 10−11 to 1.0 × 10−10 eV m,
which can be modulated by an external gate, and the magnitude
of magnetization M is taken as M/εf ∼ 0.6. Here we only
consider the condition that the Fermi energy is the largest
energy scale and that the magnetization magnitude M > αkf.
With these parameters, we can find that �τ/h̄ � 1 and,
for different anisotropy γ , the anomalous Hall conductivities
are varying on the order of 0.001–0.1e2/h for different spin–
orbit coupling coefficients. In addition, the anomalous Hall
conductivity is anisotropy dependent.

In summary, on the basis of Kubo’s linear response
theory, in the ladder approximation the vertex correction to
the anomalous Hall conductivity is evaluated by taking into
account the weak, short-ranged nonmagnetic and anisotropic
magnetic impurities. Absolutely contrary conclusions are
obtained for the two cases. In the presence of nonmagnetic
impurities, the anomalous Hall conductivity from the
nonvertex component and the vertex correction cancel each
other, and the total anomalous Hall conductivity is zero.
Different from the nonmagnetic case, in the presence of
magnetic impurities the two contributions to the anomalous
Hall conductivity cannot cancel each other, and the anomalous
Hall conductivity is nonvanishing. In the assumption of εf �
h̄/τ,�, the anomalous Hall conductivity not only depends on
the magnetization M , the momentum relaxation time τ , and
the spin–orbit coupling constant α, but is also sensitive to the
anisotropy γ . As M → 0, the anomalous Hall conductivity σxy

goes to zero, consistent with the facts, but spin accumulation

still exists, and the so-called spin Hall conductivity is nonzero,
then the question turns back to research on the spin Hall effect.
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